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1 Large Deviations and Affine Approximation of Semicon-
tinuous Functions

1.1 Recap

Here is our main result so far: We have a σ-finite measure space (M,λ) and a locally
convex topological vector space, and U as the collection of open convex sets on X. We
assume that every U ∈ U is an increasing union of compact, convex sets (e.g. Rd, Y ∗). We
also have a measurable map ϕ : M → X which takes values in a metrizable subset. Then

λ×n

({
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

})
= en·s(U)+o(n)

for U ∈ U . And if s : U → [−∞,∞] (6= +∞ if s is locally finite), then there exists
a point function s : X → [−∞,∞) which is upper semicontinuous and concave with
s(U) = sup{s(x) : x ∈ U}.
Example 1.1. In our original counting of type classes, we had M = A is a finite alphabet,
λ is counting measure, p(a) = δa, and 1

n

∑n
i=1 ϕ(ai) = pa is the empirical distribution.

Example 1.2. In Large Deviations Theory, (M,λ) is a probability space, and X = R.
Then ξ1 = ϕ(p1), ξ2 = ϕ(p2), . . . are iid random variables. Then the theorem says

P

(
1

n

n∑
i=1

ξi ∈ U

)
= exp

(
n · sup

U
s(x) + o(n)

)
.

Here, s ≤ 0 always.

1.2 The large deviations principle

How does this fit into probability theory? Suppose E[|ξi|] < ∞ (iff ϕ ∈ L1(λ)). Then the
Weak Law of Large Numbers says

P

(
1

n

n∑
i=1

ξi ∈ U

)
→

{
1 E[ξi] ∈ U
0 E[ξi] /∈ U.
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In the case where supU s < 0, this gives an exponential decay, upgrading the result of the
Weak Law of Large Numbers. We can see Large Deviations Theory as a refinement of the
convergence to zero in the WLLN.

The most “standard” formulation of the large deviations principle says

•

P

(
1

n

n∑
i=1

ξi ∈ U

)
≥ exp

(
n · sup

x∈U
s(x) + o(n)

)
for all open U ⊆ R. [This follows from the observation that LHS ≥ P( 1

n

∑n
i=1 ξi ∈ I)

for all open intervals I ⊆ U .]

•

P

(
1

n

n∑
i=1

ξi ∈ C

)
≤ exp

(
n · sup

C
s(x) + o(n)

)
for all closed C ⊆ R. [This follows from above if C is compact: if supC s(x) = α, then
we can cover C with finitely many open intervals I1, . . . , Ik such that P( 1

n

∑n
i=1 ξi ∈

I`) ≤ en·supI` s+o(n) for all ` ≤ k. We can extend this to closed sets if s(x)→ −∞ as
x→ ±∞, in which case s is called good.1 If s is good, we can cover a general closed
set with far away half infinite intervals on each side and have a compact set in the
middle. The apply the previous argument.]

1.3 Approximation of concave, upper semicontinuous functions by affine
functions

Returning to the general story, assuming local finiteness, s : X → [−∞,∞) is upper semi-
continuous and concave. How can we describe these in general? Here are some examples
where X = R:

Example 1.3. s(x) = c− x2

1This is also called proper in analysis.

2



Example 1.4. s(x) ∼ −|x| as x→ ±∞.

Example 1.5. Upper semicontinuous example with

s(x) =

{
c− x2 |x| ≤M
−∞ |x| > M.

Example 1.6. An example that tends to −∞ on the right:
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Example 1.7. An example which tends to +∞ on the right:

The key to all these cases is whether we can draw a straight tangent line that lies
entirely above the graph. In example 3, we run into a bit of trouble at the endpoints, since
we cannot draw vertical line (with infinite slope), so we may need an ε bit of wiggle room.
What this idea leads to is the fact that any upper semicontinuous function can be written
as an infimum of affine functions. Here is a lemma that we need.

Lemma 1.1. Let X be a locally convex topological vector space, and let s : X → [−∞,∞)
be an upper semicontinuous concave function with x ∈ X. If t > s(x), then there exists a
c ∈ R and a continuous functional y on X such that

• c+ 〈y, z〉 ≥ s(z) for all z ∈ X,

• c+ 〈y, x〉 < t.

This is the infinite dimensional analogue of whether we can place a line above the graph
of s(x) which stays below any point above the graph.

Proof.

We want to think of this as a picture in a larger topological vector space that includes the
vertical coordinate. Let X̃ = X × R, which is a locally convex topological vector space
with the product topology. The point (x, t) lies above the subset C := {(x, θ) : θ ≤ s(z)}.
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This subset is closed because s is upper semicontinuous and is convex because s is concave.
By the Hahn-Banach separation theorem, there exists a ỹ ∈ X̃∗ such that ỹ(x, t) > supC ỹ.
Also, ỹ can be written as ỹ(z, θ) + 〈y, z〉 + αθ for some y ∈ X∗ and α ∈ R. If we let
c be the y-intercept of the hyperplane given by Hahn-Banach and rewrite the inequality
ỹ(x, t) > supC ỹ in terms of c, we get the result.

Proposition 1.1. A function s : X → [−∞,∞) is upper semicontinuous and concave if
and only if

s(x) = inf{c+ 〈y, x〉 : c ∈ R, y ∈ X∗, c+ 〈y, z〉 ≥ s(z) ∀z ∈ X}.

1.4 The Fenchel-Legendre transform

How can we give a canonical family in here? For fixed y ∈ X∗, what is the best c to use?
We want c+ 〈y, z〉 ≥ s(z) for all z. That is, we want c ≥ s(z)− 〈y, z〉, so we want to take

c = sup
z∈X

s(z)− 〈y, z〉 =: s∗(y).

This is known as the Fenchel-Legendre transform of s. Here are some properties of s∗:

Proposition 1.2.

1. s∗ is lower semicontinuous and convex.

Proof. s∗ is the supremum of lower semicontinuous, convex (affine) functions.

2. Provided s 6≡ −∞, we get s∗ : X∗ → (−∞,∞] and s∗ is not always +∞.

3. s(z) = infy s
∗(y)− 〈y, z〉. That is, s = (s∗)∗.
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