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1 Large Deviations and Affine Approximation of Semicon-
tinuous Functions

1.1 Recap

Here is our main result so far: We have a o-finite measure space (M, \) and a locally
convex topological vector space, and U as the collection of open convex sets on X. We
assume that every U € U is an increasing union of compact, convex sets (e.g. R% Y*). We
also have a measurable map ¢ : M — X which takes values in a metrizable subset. Then
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for U € U. And if s : U — [—00,00] (# +oo if s is locally finite), then there exists
a point function s : X — [—00,00) which is upper semicontinuous and concave with
s(U) =sup{s(z) : x € U}.

Example 1.1. In our original counting of type classes, we had M = A is a finite alphabet,
A is counting measure, p(a) = d,, and % Yoy w(a;) = pq is the empirical distribution.

Example 1.2. In Large Deviations Theory, (M, ) is a probability space, and X = R.
Then & = ¢(p1),&2 = p(p2),. .. are iid random variables. Then the theorem says
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Here, s < 0 always.

1.2 The large deviations principle

How does this fit into probability theory? Suppose E[|¢;]] < oo (iff ¢ € L1(A)). Then the
Weak Law of Large Numbers says
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In the case where sup; s < 0, this gives an exponential decay, upgrading the result of the
Weak Law of Large Numbers. We can see Large Deviations Theory as a refinement of the
convergence to zero in the WLLN.

The most “standard” formulation of the large deviations principle says

P (i zn:gi € U) > exp <n sup s(z) + 0(n)>
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for all open U C R. [This follows from the observation that LHS > P(2 Y% | & € 1)
for all open intervals I C U]
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for all closed C' C R. [This follows from above if C'is compact: if supy s(x) = «, then
we can cover C' with finitely many open intervals Iy,..., I} such that IP’(% Y& €
1) < e™SWP1e st fo1 411 ¢ < k. We can extend this to closed sets if s(z) — —o0 as
x — %00, in which case s is called good.! If s is good, we can cover a general closed
set with far away half infinite intervals on each side and have a compact set in the
middle. The apply the previous argument.|

1.3 Approximation of concave, upper semicontinuous functions by affine
functions

Returning to the general story, assuming local finiteness, s : X — [—00,00) is upper semi-
continuous and concave. How can we describe these in general? Here are some examples
where X = R:

Example 1.3. s(z) = ¢ — 2
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LThis is also called proper in analysis.




Example 1.4. s(z) ~ —|z| as * — +o0.
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Example 1.5. Upper semicontinuous example with
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Example 1.6. An example that tends to —oo on the right:
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Example 1.7. An example which tends to +oc on the right:
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The key to all these cases is whether we can draw a straight tangent line that lies
entirely above the graph. In example 3, we run into a bit of trouble at the endpoints, since
we cannot draw vertical line (with infinite slope), so we may need an ¢ bit of wiggle room.
What this idea leads to is the fact that any upper semicontinuous function can be written
as an infimum of affine functions. Here is a lemma that we need.

Lemma 1.1. Let X be a locally convex topological vector space, and let s : X — [—00,00)
be an upper semicontinuous concave function with x € X. Ift > s(x), then there exists a
c € R and a continuous functional y on X such that

e c+ (y,z) > s(z) forall z € X,
o c+ (y,x) <t.

This is the infinite dimensional analogue of whether we can place a line above the graph
of s(z) which stays below any point above the graph.

Proof.

We want to think of this as a picture in a larger topological vector space that includes the
vertical coordinate. Let X = X x R, which is a locally convex topological vector space
with the product topology. The point (z,t) lies above the subset C := {(z,60) : 0 < s(2)}.



This subset is closed because s is upper semicontinuous and is convex because s is concave.
By the Hahn-Banach separation theorem, there exists a y € X* such that y(x,t) > supc y.
Also, y can be written as y(z,0) + (y,2) + af for some y € X* and o € R. If we let
¢ be the y-intercept of the hyperplane given by Hahn-Banach and rewrite the inequality
y(x,t) > supc ¥ in terms of ¢, we get the result. O

Proposition 1.1. A function s : X — [—00,00) is upper semicontinuous and concave if
and only if

s(z) =inf{c+ (y,z) :c € R,y € X™, c+ (y,2) > s(z) Vz € X}.

1.4 The Fenchel-Legendre transform

How can we give a canonical family in here? For fixed y € X*, what is the best ¢ to use?
We want ¢ + (y, z) > s(z) for all z. That is, we want ¢ > s(z) — (y, 2), so we want to take

c=sups(z) — (y,z) =:57(y).
zeX

This is known as the Fenchel-Legendre transform of s. Here are some properties of s*:
Proposition 1.2.

1. s* is lower semicontinuous and conver.
Proof. s* is the supremum of lower semicontinuous, convex (affine) functions. O

2. Provided s Z —o0, we get s* : X* — (—00,00] and s* is not always +oo.

3. s(z) =infy s*(y) — (y,2). That is, s = (5%)s.
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